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a b s t r a c t 

Traditionally, physicians need to manually delineate the suspected breast cancer area. Numerous studies 

have mentioned that manual segmentation takes time, and depends on the machine and the operator. 

The algorithm called Convolutional Neural Network Improvement for Breast Cancer Classification (CNNI- 

BCC) is presented to assist medical experts in breast cancer diagnosis in timely manner. The CNNI-BCC 

uses a convolutional neural network that improves the breast cancer lesion classification in order to help 

experts for breast cancer diagnosis. CNNI-BCC can classify incoming breast cancer medical images into 

malignant, benign, and healthy patients. The application of present algorithm can assist in classification of 

mammographic medical images into benign patient, malignant patient and healthy patient without prior 

information of the presence of a cancerous lesion. The presented method aims to help medical experts 

for the classification of breast cancer lesion through the implementation of convolutional neural network 

for the classification of breast cancer. CNNI-BCC can categorize incoming medical images as malignant, 

benign or normal patient with sensitivity, accuracy, area under the receiver operating characteristic curve 

(AUC) and specificity of 89.47%, 90.50%, 0.901 ± 0.0314 and 90.71% respectively. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

As United States Breast Cancer Statistics expressed in 2017, an

stimated 252,710 new invasive malignancy cases will be analysed

n women, alongside 63,410 new patient instances of non-intrusive

osom disease ( Breast cancer statistics, 2018 ). Malaysian woman

as one of every 20 opportunities to be diagnosed as breast cancer

atient amid her lifetime ( Chen & Molloi, 2003 ). Among all races,

hinese women have the most noteworthy hazard (6.25%) to anal-

se as breast cancer patient amid her lifetime. The Indian and the

alay women with the lifetime danger of 5.88% and 3.57% then

rail this individually. 

The rate of survival from breast cancer is highly impacted by

alignancy ’s phase during diagnosis ( Youlden et al., 2012 ). In this

anner, early determination is required to give legitimate treat-

ent to the breast cancer patients and to diminish the dismal-

ess and death rate ( Wang, 2017 ). An elite conclusion for vari-

us sorts of tumour is vital for specialists to assist them to choose

he appropriate treatment ( Chin-Hsing, Ann-Shu, Jiann-Der, & Yang,

995 ). 

Numerous specialists have applied artificial neural networks for
arious kinds of disease. Distinctive calculations of artificial neu- 
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al networks have also been utilized for breast cancer disease

dentification ( Araujo et al., 2017; Mohebian, Marateb, Mansourian,

añanas, & Mokarian, 2017 ). 

Artificial Neural Network (ANN) instruct the trained system to

erform the dedicated task instead of programming the system to

erform the defined tasks. The neurons are correlated accordingly

o the intricate ANN architecture. The ANN can be configured as

nsupervised or supervised. 

Mammography is currently the standard and widely used breast

ancer medical screening option. However it is not that effective

or patient under 40 years old and dense breasts, less susceptible

o small tumours (less than 1 mm, approximately 10 0,0 0 0 cells),

nd gives no indication of breast cancer ( Hellquist, Czene, Hjälm,

yström, & Jonsson, 2015; Onega et al., 2016 ). The Contrasted-

nhanced (CE) digital mammography provides more diagnostic ac-

uracy than mammography and ultrasound in dense breasts cases,

nd it is not widely available because it is costly and involves

igh levels of radiation ( Lewis et al., 2017 ). Ultrasound has been

sed as an additional medical imaging tool for mammography

 Ozmen et al., 2015 ). Magnetic resonance imaging (MRI) is able to

etect small sized lesions that were undetected through mammog-

aphy. However it is also high priced and has low specificity, hence

t may result in the over-diagnosis ( Hua, Hsu, Hidayati, Cheng, &

hen, 2015; Roganovic, Djilas, Vujnovic, Pavic, & Stojanov, 2015 ).

he positron emission tomography (PET) is considered the most

https://doi.org/10.1016/j.eswa.2018.11.008
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accurate technique for visualizing the spread of tumours or their

response to therapy ( Xavier et al., 2016 ) . 

Three-quarters of National Health Service (NHS) Trusts and

Health Boards (76%) says that there is not enough medical special-

ist to nurse for breast cancer patients ( Breast Cancer Care, 2018 ).

Shortage of specialist may lead to late treatment and diagnosis for

breast cancer patients. Hence, an informative and early detection

for sign of breast cancer can be applied to decrease the recall rate

for breast cancer screening tests. President of Malaysian Oncologi-

cal Society, Dr Matin Mellor Abdullah said that only 110 and 105 of

such doctors are serving in both private and public sectors, to take

care 31 million of Malaysia citizen, at least 240 cancer specialists

in each sector are needed to meet that criteria ( MIMS news, 2018 ).

It was difficult for to use a fixed image processing procedure to

detect the various type of mammograms. Various sizes and shapes

of fat tissue in the breast result in different contrast from mam-

mogram devices. The primary purpose of this article is to establish

new quantitative tools through implementation of machine learn-

ing, deep learning techniques that can help decrease the recall rate

of screening mammography. The presented Convolutional Neural

Network Improvement for Breast Cancer Classification (CNNI-BCC)

with a potential impact on changing the balance of routine breast

cancer screening procedure towards more benefit and less invasive

method. CNNI-BCC is designed to perform effectively in both local-

ize and classification the breast cancer tissue to assist the medical

experts in diagnosing the breast cancer. 

For the evaluation over the performance of CNNI-BCC, a case

study with mammography data sets from breast cancer patients

and control subjects is conducted. CNNI-BCC is evaluated accord-

ing to clinical truths and a comparison with existing techniques.

The presented work is organised as follows. The review of the rel-

evant methods is presented in Section 2 . In Section 3 , the pro-

posed CNNI-BCC method and its variants are explained in detail.

In Section 4 , the case study is presented, where results from CNNI-

BCC and other methods are analysed and discussed. The results of

the research are summarized and concluded in Section 5 . 

2. Related works 

Deep learning is part of machine learning (ML) and a special

class of artificial neural network (ANN) that resembles the multi-

layered human cognition system. Deep learning is currently receiv-

ing a lot of attention due to its application on health care sector

( Lee et al., 2017 ). 

However, given the current availability of big data, improved

computing power with graphics processing units (GPUs), and new

algorithms to form deep neural network (DNN), many limitations

of the ANN have now been resolved. These deep learning ap-

proaches have shown impressive performance in imitating humans

in various fields, including medical imaging. One of the typical

tasks of radiology practice is to detect structural abnormalities

and categorize them into disease categories ( Qin et al., 2018; Tang

et al., 2018; Wang & Summers, 2012 ). 

2.1. Convolutional neural networks (CNN) for breast cancer 

classification 

The Convolutional Neural Network (CNN), which consists of

multiple layers of neural computing connections with minimal

systematic processing, has yielded significant improvements for

computer vision’s sector. The CNN global learning process sim-

ulates the organization of the animal visual cortex ( Hubel &

Wiesel, 1968 ). 

CNN’s architecture is composed of convolutional, pooling layers

and fully connected layers as shown in Fig. 1 . The primary pur-

pose of a convolutional layer is to detect edges, lines, and other
isual elements like local patterns. The setting of specialized fil-

er operators, called convolutions, are learned through the system.

his mathematical operation represents the multiplication of lo-

al neighbours from a specified pixel by a certain array of kernel.

hrough the kernels, this operation imitates the extraction of vi-

ual features, such as colours and edges. This is similar to those

oted for the visual cortex. 

By applying a deep CNN architecture to imitate the natural neu-

omorphic multilayer network, deep learning can adaptively learn

 hierarchical representation of models, from low to high level

unctions, and then identify the most significant functionalities for

 particular model ( Krizhevsky, Sutskever, & Hinton, 2012 ). CNN

as the best performance for image classification of a large image

epository, such as ImageNet ( Krizhevsky et al., 2012 ). 

Because the deep CNN architecture typically involves many lay-

rs in the neural network, there may be millions of weight param-

ters to estimate, thus requiring a large number of data samples

or model formation and parameter setting. In general, the mini-

um requirement for data size depends on the application of ra-

iological images ( Krizhevsky et al., 2012 ). 

.2. Computer-aided detection and diagnosis (CAD) 

CAD systems have been widely applied in the context of Pic-

ure Archiving and Communication Systems (PACS) ( Bogoni et al.,

012; Le, Liu, & Huang, 2009; Welter, Hocken, Deserno, Grouls, &

ünther, 2010; Zhou, 2007 ). This seamless integration of CAD into

ACS increases the sensitivity of the reader, without significantly

ncreasing the reading time of the image and thus enhancing the

fficiency of the normal practice of radiology. 

In summary, current CAD systems have two different parts:

etecting and reducing positivity. Typically speaking, detection is

ainly based on algorithms specific to the detection task, which

esults in many potential lesions. This last part is usually based on

raditional ML to reduce false positives. Unfortunately, even with

hese complicated and sophisticated programs, the overall perfor-

ance of current CAD systems is not efficient enough, which in-

erfere their widespread usage in routine clinical practice. Another

mportant limitation of current CAD systems is sensitivity to imag-

ng protocols and noise ( Drew, Cunningham, & Wolfe, 2012; El-

ahraa, El-Gamal, Mohammed, & Ahmed, 2016; Lee et al., 2017 ).

ith its known flexibility for image noise and variation in imaging

rotocols, deep learning has the potential to improve the perfor-

ance of current CAD at a level useful in everyday practice. Unlike

he current CAD system, the deep learning method can provide

s with a unique CAD solution. In addition, the unique nature of

ransfer learning can accelerate the development of the CAD sys-

em for various diseases and modalities. 

The first reports of deep learning-based CAD systems are

uggested by researchers, such as applications on breast cancer

 Wang, Khosla, Gargeya, Irshad, & Beck, 2016 ), lung cancer ( Hua,

su, Hidayati, Cheng, & Chen, 2015; Kumar, Wong, & Clausi, 2015 )

nd Alzheimer’s disease (AD) ( Liu et al., 2014; Suk & Shen, 2013;

uk, Lee, & Shen, 2014 ). They show promising results in terms of

etection and staging. In-depth learning has been applied for the

dentification, detection, diagnosis and risk analysis of breast can-

er ( Cheng et al., 2016; Kallenberg et al., 2016 ). 

The reviewed studies suggested that medical image annotations

s time taken and operator dependent. The screening machine may

ffect the image quality due to the image noise variance. Manual

egmentation is still widely applied as ground truth by medical

ractitioner. Hence, we present the CNNI-BCC to detect and classify

he region of interest of breast cancer lesion. In order to evaluate

he performance of the presented works, the comparison between

resented works and other reviewed studies ( Neuroph, 2018; Saad,

hadour, & Kanafani, 2016; Tan, Sim, & Ting, 2017 ) are conducted
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Fig. 1. Architecture of convolutional neural networks, including input, Conv., and FC layers. Conv. = convolutional, FC = fully connected. 
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Fig. 2. Mammogram image with labelled data. 
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nd tabulated at Section 4.0 . The previous work is experimental

ork, which validates the MIAS results with designed CNN ar-

hitecture. The current work presents novel Interactive detection-

ased lesion locator (IDBLL) to preform two-phase classification on

reast cancer lesion to enhance the accuracy of classification. 

.3. Contribution 

Several addressed challenges in reviewed studies are: 

1) The tedious annotation produces an additional source for errors

in data labels 

2) Lesion margins are ambiguous, creating controversial annota-

tions 

3) CAD system often affected by sensitivity to imaging protocols

and noise 

4) Medical data annotations is time consuming 

The following major contributions are addressed: (1) We

resent a deep CNN for classification of a mammograms according

o the patch features; (2) The presented works further suggests de-

ection of the lesions through designed Interactive detection based

esion locator (IDBLL); (3) CNNI-BCC provides assistance to medical

xperts in breast cancer diagnosis. 

Our method suggests the following advantages: (1) Decompos-

ng the images into patches; (2) The patch-based approach allows

rocessing of non-rectangular regions in the image by masking of

ertain areas, with simply excluding patches from the collection;

3) A combined pre-trained CNN allows training on small data sets;

4) The presented CNNI-BCC utilise the patch feature relevance to

etect and classify the lesion region and category. 

In this paper, an automated method of classifying breast cancer

s presented, it is called Convolutional Neural Network Improve-

ent for Breast Cancer Classification (CNNI-BCC). It is designed to

id medical experts in the breast cancer classification. 

. Materials and methods 

.1. Materials 

The applied digital mammogram databases was prepared

nd provided by Mammographic Image Analysis Society (MIAS)

 Mammographic Image Analysis Society, 2018 ). The mammogram

as provided in Portable Gray Map (PGM) image format. The med-

cal doctor verified and diagnosed ground truth data that was pro-

ided. For this study, 21 benign cases, 17 malignant cases and 183

ormal cases are involved. The raw digital mammogram image ac-

ompanied with labelled ground truth data is shown on Fig. 2 .

omparative experiments were conducted between the presented

ork and the commercial software named Neuroph ( The Neu-

oph, 2018 ) which was used as a semi-automatic segmentation al-

orithm. 
The provided ground truth information includes the background

issue, type of abnormality present, the abnormality’s severity, x -

xis, y -axis coordinates of the abnormality centre, and the abnor-

ality’s radius measured in pixels. 

.2. Methods 

When training and testing on a shuffled dataset with an even

istribution of normal, benign, and malignant data points, we ob-

erve the best recall and precision on a CNN. This convolutional

eural network consists of 1 input layer, 28 hidden layers and 1

utput layer. The input layer is used original size abnormally can-

er images in RGB channels. A convolutional layer is located at

rst hidden layer for feature map extraction. A dropout rate of

.5, a learning rate of 0.002, fully connected hidden layer of 1024

eurons, and Rectified Linear Units (ReLUs). Data augmentation is

erformed on the image patches to overcome the overfitting is-

ue faced by other researchers. ReLUs is applied as nonlinear lay-

rs in the fully connected layer section. The process is initialized

ith annotations and over patches. The stopping criterion was set

o 25–35 epochs according to a validation set. The architecture of

NNI-BCC is shown in Fig. 3 . 

Total 30 layers CNN operations is involved the description and

nput size for each layer is tabulated in Table 1 . 

Fig. 4 shows the overall procedure of the CNNI-BCC method.

t consists of three main steps: (a) feature wise pre-processing

FWP), (b) convolutional neural network (CNN) -based classifica-

ion (CNNBS), (c) interactive detection based lesion locator (IDBLL).

.2.1. Feature wise data augmentation (FWDA) 

The raw digital mammogram image size is 1024 × 1024 pixels.

n order to process the whole image, tremendous amount of com-

utation works and time are required. Hence, feature wise pre-
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Fig. 3. shows the neural network architecture section of the CNNI-BCC. 

Table 1 

The layers ‘description for CNNI-BCC architecture. 

Layer’s number Type/Stride Filter Input size 

1 Conv /s2 3 × 3 × 3 × 32 224 × 224 × 3 

2 Conv dw /s1 3 × 3 × 32 dw 112 × 112 × 32 

3 Conv/ s1 1 × 1 × 32 × 64 112 × 112 × 32 

4 Conv dw /s2 3 × 3 × 64 dw 112 × 112 × 64 

5 Conv /s1 1 × 1 × 64 × 128 56 × 56 × 64 

6 Conv dw /s1 3 × 3 × 128 dw 56 × 56 × 128 

7 Conv /s1 1 × 1 × 128 × 128 56 × 56 × 128 

8 Conv dw /s2 3 × 3 × 128 dw 56 × 56 × 128 

9 Conv /s1 1 × 1 × 128 × 256 56 × 56 × 128 

10 Conv dw /s1 3 × 3 × 256 dw 28 × 28 × 256 

11 Conv /s1 1 × 1 × 256 × 256 28 × 28 × 256 

12 Conv dw /s2 3 × 3 × 256 dw 28 × 28 × 256 

13 Conv /s1 1 × 1 × 256 × 512 14 × 14 × 256 

14–22 Conv dw/ s1Conv /s1 3x3x512 dw1x1x512x512 14x14x512 

23 Conv dw /s2 3x3x512 dw 14x14x512 

24 Conv /s1 1x1x512x1024 7x7x512 

25 Conv dw /s2 3x3x1024 dw 7x7x1024 

26 Conv /s1 1x1x1024x1024 7x7x1024 

27 Average Pool /s1 Pool 7x7x 7x7x1024 

28 Fully Connected/s1 1024x10 0 0 1x1x1024 

29 Softmax/s1 Classifier 1x1x10 0 0 
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processing (FWP) is designed to shorten the CNN process time

by pre-processing the input images beforehand. FWP is applied to

divide the input images into smaller image patches. The images

patches are rotated clockwise to 90 °, 180 °, 270 ° and 360 °. Every

rotated patch is flipped vertically. Henceforth, an input mammo-

gram image will generate eight image patches. The MIAS provides

the diagnosis result and ground truths. 

3.2.1.1. Subsampling. The abnormality or the region of interest

(ROI) of mammogram is extracted and labelled as image patches

as shown in Fig. 5 . The abnormality information given by MIAS is

utilised to specify the ROI centre. Once the ROI is extracted, the

image feature patch will be processed into 8 different patches ac-

cording to the rotation angle and the flipped position. The anno-

tation of the abnormality is exported as XML files along with in-

formation like x -axis, y -axis coordinates of the abnormality centre

and breast cancer abnormality classes. 

The training data is prepared through patches generated from

delineated abnormal tissue’s region of interest (ROI). Total 8 fea-
ure patches will be generated from one mammogram image. The

mage patches from benign cases, malignant cases and normal

ases are shown on Figs. 6 –8 . 

The resolution of training data patch is 128 × 128 pixels. Image

ransformation is applied to subsampling the 1024 × 1024 pixels

nput mammogram images. The convoluted image patches provide

eatures in various direction to enhance the classification accuracy

or the training data. 

The ROI is extracted from the background to implement the

lassification process. The black background of the mammogram

mage may affect the condition of the training data and leads to

nefficient feature learning for the CNN. Some samples of affected

raining data patches are shown at Fig. 9 . 

The detailed algorithm of feature wise data augmentation

FWDA) is shown in Table 2 . 

The FWDA is utilise to generate larger dataset patches capac-

ty to decrease the likelihood of overfitting occurrence. Augmented

mage patches can improve the classification performance by prov-

ng more feature information in various image coordination. 
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Fig. 4. The overall architecture of the presented work. 

Table 2 

Algorithm 1: Feature wise data augmentation (FWDA) 

1: Read Input Mammogram for benign M b , malignant, M m and normal patients M n . 

2: Pre-process the input images, M b , M m, M n. 

3: M b , M m, M n subsample according to transformation 

4: For M b , ROTATE to 90 °, 180 °, and 270 °
For M m, ROTATE to 90 °, 180 °, and 270 °
For M n, ROTATE to 90 °, 180 °,and 270 °

5: Till all images had been re-aligned 

6: Perform FLIP on all aligned images. 

7: Write all images in as subsampled images 

8: Repeat on other training data. 

9: End 
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Table 3 

Algorithm 2: Convolutional neural networks based classification (CNNBS) 

1: Set parameters: Error Max ,Iteration max ,Rate learning 

2: Set CNNLayer input , CNNLayer conv , CNNLayer pooling , CNNLayer dense and CNNLayer output 

3: Read Data Training , send input data to the CNNBS network. 

// CNNBS data training phase 

4: For every input data, 

5: Compute differences through between predicted output value and the estimated output value for the input 

6: Change weights value accordingly for all neurons by applying the obtained error 

7: Repeat loop until acquired certain threshold 

8: End For loop 

9: End 

Fig. 5. Labelling process on raw input mammogram image. 
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3.2.2. Convolutional neural networks based classification (CNNBS) 

CNN is composed of neurons that are arranged according

weight and biases. Every neuron receives inputs data. The dot

product is performed and trailed by non-linearity. The entire net-

work always defines a single differentiable score function. The CNN

layers architecture neurons are arranged in three different dimen-

sions: height, width, and depth as shown in Fig. 10 . 

CNNI-BCC architecture is constructed from one input layer, two

hidden layer, and one output layer. The training dataset patches

from FWDA served as input data for the designated input layer.

In the presented works, the input training data is measured in 48

pixels x 48 pixels x 1 in dimension. The hidden layer of presented

CNNI-BCC has convolutional layer, rectified linear unit (ReLU) layer,

pooling layer, and dense (fully connected) layer. 
Fig. 6. Training data patch
In the convolutional layers, the designated convolution filters

s applied on input image. The filtering process is performed on

egion-by-region basis. For every sub region, the convolution ma-

rix operations is employed to generate the value in order to form

utput feature map. This layer is commonly referred as sets of

eights as a filter or a kernel that is convolved with the input.

ectified linear unit (ReLU) activation function is applied on con-

olution layer to introduce nonlinearities into the model through

enerated output map as shown in Fig. 11 . 

The pooling layer has played a crucial role for CNNI-BCC. Sev-

ral nonlinear functions are employed to enhance pooling among

hich max pooling is the commonly used functions. It divides the

nput image patch into a set of non-overlapping rectangles. Then,

or every sub-region, the display is set at maximum. The exact fea-

ure location is less important than its approximate location rela-

ive to other features. The number of parameters and the amount

f computation in the network can be reduced through pooling

ayer, and thus control the over-learning. The grouping operation

rovides another type of translation invariance. 

Back propagation is utilised in CNNI-BCC for the neuron weight,

hich is updated on last closest value. The computed error is ap-

lied in the model for enhance accuracy. 

Rectified linear units (ReLUs) had been applied for the hidden

ayers. If the input is less than zero, the rectified linear unit has

utput 0. The output equals to input if the input is greater than

ero. ReLU activation function is shown at Eq. (1) , 

f ( x ) = max ( x, 0 ) , (1)

The employed softmax function compresses the outputs of each

euron to be in between 0 and 1. It is also acted similar to the

igmoid function. However, it also divides each output such that

he total sum of the outputs is equal to 1.The generated output is

 categorical probability distribution. It computes the probability

o that any of the classes is true. 

( z ) j = 

e Z j ∑ K 
k =1 e 

z k ′ 
(2)

here z defines a vector of the inputs to the output layer .If there

re 10 output units, then there are 10 elements in z. The j indexes

he output units, so that j = 1, 2, …, K. 

Final layer in CNNBS is fully connected layer. It is usually called

s a decision layer. For CNNBS, the dense layer is connected last
es for benign cases. 
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Fig. 7. Training data patches for malignant cases. 

Fig. 8. Training data patches for normal cases from healthy patient. 

Fig. 9. The affected training data. 
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Fig. 11. Rectified linear unit (ReLU) activation function applied in Convolutional 

Neural Network Improvement for Breast Cancer Classification (CNNI-BCC). 
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idden layer. Three possible output categories are 0 for the normal,

 for the benign, and 2 for the malignant. Fig. 12 shows the archi-

ecture of proposed approach CNNBS. The MIAS dataset is divided

nto training set and testing set. FWDA is applied to increase the

ata pool to reduce the overfitting occurrence. The trained model

s utilise during testing phase for classification status. The trained

odel is further implemented through Interactive detection based

esion locator (IDBLL) in Section 3.2.3 . 

Depth wise separable convolutional layer (DSC) has two

atches. One batch is for the normalization, and the other is for

ectified linear unit (ReLU) which is followed with all layers of the

NNBS. The flow of depth wise separable convolution (DSC) layer

s shown at Fig. 13 . 

Depth wise convolution and Pointwise Convolution are involved

or Depth wise separable convolution. A 3 × 3 convolution filter is

pplied as factorized convolution per input image. It will only use

o filter a single depth of the input map. Depth wise separable con-

olution will collect the feature layer by layer. The Depth wise con-

olution is as shown at Fig. 14 . 
Fig. 10. The neuron arrangement of Convoluti
Depth wise separable convolution will perform the convolution

eparately to be 3-layer smaller output for RGB image as shown in

ig. 15 . However, in order to reduce the X and Y pixel, the number

f layers remained the same. 

Pointwise convolution is a filter that applied for data combi-

ation as shown in Fig. 16 . The feature of the map is increased

ith same X and Y pixel as shown in Fig. 17 . The primary purpose

f Pointwise convolution is to generate more features for better

lassification on the detected object. The plotted receiver operat-

ng characteristic (ROC) curve for CNNI-BCC is shown in Fig. 18 . 
onal Neural Networks. ( Karpathy, 2018 ). 
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Fig. 12. The flow of CNNBS. 

Fig. 13. The flow of depth wise separable convolution (DSC) layer ( Goodfellow, Bengio, & Courville, 2016 ). 

Fig. 14. The illustration of Depth wise convolution and Pointwise Convolution 

( Goodfellow et al., 2016 ). 
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Fig. 15. The illustration of Interactive detection ba
.2.3. Interactive detection based lesion locator (IDBLL) 

Interactive detection based lesion locator (IDBLL) utilises Single

hot MultiBox Detector (SSD) for object detection in images to use

ingle deep neural network. IDBLL can detect object by using pre-

icted bounding boxes. The features are resampled for each pre-

icted bounding box, and classify them through IDBLL. 

The primary advantage of IDBLL is the prediction is based on

very convolution for each feature map for better estimation. The

otal amount of estimated anchor point is decreased in a smaller

ixels feature map. During the training phase of IDBLL, original

024 × 1024 pixels image and annotation that are used. Default

oundary boxes are matched with the annotation to give a positive

alue in the area. Hence, the background and non-relevant regions

re given negative intensity value. IDBLL uses this information to
sed lesion locator (IDBLL) ( Liu et al., 2016 ). 
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Fig. 16. 8 × 8 feature map ( Liu et al., 2016 ). 

Fig. 17. 4 × 4 feature map ( Liu et al., 2016 ). 

Fig. 18. The plotted receiver operating characteristic (ROC) curve for CNNI-BCC. 
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Table 4 

Algorithm 3: Interactive detection based lesion locator (IDBLL) 

1: Set size for IDBLL BoundingBox 

2.: Read Data Testing 

3: For every point p of Data Test ( R [ i,j ] x C [ i, j ] x No.of Pixel ), 

4: Apply IDBLL BoundingBox 

5: Check if the Pixel Surround match the features 

6: Compare the pixel feature with Trained CNNBS 

7: Else 

8: Include p in LIST[p] 

9: End For loop 

10: IDBLL BoundingBox (LIST[ v ]) 

11: Repeat for other test mammogram images 

14: End 
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B  
ifferentiate the dissimilarities between breast cancer region and

ackground. 

The total amount of estimated anchor point is decreased in a

maller pixels feature map. During the training phase of IDBLL,

riginal 1024 × 1024 pixels image and annotation that are used.

efault boundary boxes are matched with the annotation to give a

ositive value in the area. Hence, the background and non-relevant

egions are given negative intensity value. IDBLL used these infor-

ation to differentiate the dissimilarities between breast cancer

egion and background. 

IDBLL applies pre-defined set of bounding boxes at each loca-

ion of image with different size’s ratio. Hence, during the train-

ng phase, it will match the default boxes with the given label and

earn the differences of the object with features surrounded it. ID-

LL will compare the detected boxes with trained boxes to extract

he feature map of CNNBS. 

The algorithm of IDBLL is shown as Table 4 . 
.0. Experimental study and results discussion 

The experiments are conducted on 221 real patient mammo-

ram. Mammographic Image Analysis Society ( MIAS, 2018 ) pro-

ides the data. The presented method performance is assessed in

erms of the area under the receiver operating characteristic (ROC)

urve, sensitivity, accuracy and specificity. 

ensit i v it y = T P/ ( T P + F P ) , (3)

peci f icity = T N/ ( F P + T N ) (4) 

ccuracy = ( T P + T N ) /N (5) 

here, N represents the total number of patients, TP defined true

ositive value, TN denoted true negative value, FN is the false neg-

tive while FP represented false positive value. 

With CNNI-BCC, 34 out of 39 positive cases have been identified

s true positive cases, while 166 over 183 negative cases have been

dentified as true negative cases. The sensitivity, specificity, and ac-

uracy scores are 89.47%, 90.71%, and 90.50% respectively. The ex-

eriments are conducted to analyse the performance between pre-

ented work and existing reviewed methods. The results are tabu-

ated as Table 5 . 

The adaboost ( Saad et al., 2016 ) is tested on MIAS dataset and

chieve 78.12%, 87.5% and 81.25% in sensitivity, specificity and ac-

uracy. BPNN ( Saad et al., 2016 ) accuracy is lower than adaboost.

oth methods utilise the supervised neural network setup for

raining and testing phases. However, they results may be affected

y how they pre-process the MIAS dataset images. Various pre-

rocess methods yield different effect for the classification task. 

Based on 221 number of patients, the sensitivity, specificity, ac-

uracy for Neuroph ( The Neuroph, 2018 ) are 97.37%, 22.95% and

5.75% respectively. The false positive rate for Neuroph ( The Neu-

oph, 2018 ) is 77.05%. The high false positive rate may due to the

ifficulty faced for the normal mammogram. The dense mass of the

reast region of younger patient may be miss-classified at breast

ancer lesion. The comparison of the ROC curves between CNNI-BC

nd Neuroph ( The Neuroph, 2018 ) are discussed at Section 4.3 . 

The BCDCNN ( Tan et al., 2017 ) is the previous presented

ethod. BCDCNN achieved low in sensitivity, specificity and accu-

acy in comparison to the current proposed approach. The FWDA

nd IDBLL help to improve the performance of the proposed ap-

roach, CNNI-BCC. By having a two phase classifications on CNNBS

nd IDBLL, the classification accuracy can be improved. The re-

eiver operating characteristic (ROC) curve statistics show promis-

ng performance of the proposed approach. 

According to Table 6 , the area under the ROC curve for CNNI-

CC is 0.901 ± 0.0314. The significance level P is equal to 0.5
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Table 5 

The comparison between Convolutional Neural Network Improvement for Breast Cancer Classification (CNNI-BCC) and 

reviewed studies. 

Methods Sensitivity (%) Specificity (%) Accuracy (%) False positive rate False negative rate 

Adaboost 78.12 87.5 81.25 – –

BPNN 75.00 81.25 77.08 – –

Neuroph MLP 97.37 22.95 35.75 77.05 2.63 

BCDCNN(Version 1) 35.32 35.43 38.45 64.57 64.68 

BCDCNN(Version 2) 54.32 54.36 54.35 45.64 45.68 

BCDCNN(Version 3) 82.68 82.73 82.71 17.27 17.32 

CNNI-BCC 89.47 90.71 90.50 9.29 10.51 

Fig. 19. Comparison between CNNI-BCC and MCCNN ( Henry, 2018 ) on all arguments, mass region arguments and calcification arguments images. 

Table 6 

The ROC curves statistics for Convolutional Neural 

Network Improvement for Breast Cancer Classifica- 

tion (CNNI-BCC) against ground truths. 

Statistics Value 

Area under the ROC curve (AUC) 0.901 

Standard Error a 0.0314 

95% Confidence interval b 0.854 to 0.937 

z statistic 12.779 

Significance level P (Area = 0.5) < 0.0 0 01 

Youden index J 0.8018 

Associated criterion > 0 

Sensitivity 89.47 

Specificity 90.71 

 

 

 

 

 

 

 

 

 

 

 

 

b  

J  

w  

m  

n

 

s  

e  

s  

s  

a

4

c

 

c  

p  

r

 

d  

a  

g  

b  

m  

a  

a  

U  

r  

a  

a

is < 0.0 0 01, hence indicates that presented work has high perfor-

mance. The area under the ROC curve (AUC) calculation summa-

rized the ROC curve analysis into a scalar value, which is a value

ranged between 0 and 1. The nearer the AUC score to value 1, the

better the overall performance of the application. AUC is calculated

as shown in Eq. (6) : 

AUC = 

∫ −∞ 

∞ 

T P R ( T ) 
(
−F P R 

′ ( T ) 
)
dT 

= 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

I 
(
T ′ > T 

)
f 1 
(
T ′ 

)
f 0 ( T ) d T 

′ d T = P ( X 1 > X 0 ) , (6)

where the threshold in which the instance is classified as “posi-

tive” if X > T, and “negative” otherwise; X 1 is the score for a posi-

tive instance, and X 0 is the score for a negative instance. 

The disease prevalence is 17.2% which represents the relevance

between positive group and negative group. In this case, the posi-

tive group is the diagnose breast cancer patients while the negative

group denotes the healthy or normal patients. 
The Youden index confidence interval is calculated as predictive

ehaviour according to the collected data. The index is defined as:

 = max { sensit i v it y c + speci f icit y c − 1 } , (7)

here c ranges over all possible criterion values. While J defines

aximum vertical distance between the ROC curve and the diago-

al line. 

The criterion value corresponding with the Youden index (J)

hown in Table 7 is the optimal criterion value only when dis-

ase prevalence is 50%. So, equal weight is given to sensitivity and

pecificity, and costs of various decisions are ignored. The boot-

trapped 95% confidence interval is calculated for the Youden index

nd its associated criterion value. 

.1. Evaluation based on all arguments, mass region arguments and 

alcification arguments 

The input patch for CNNI-BCC is 128 × 128 pixel. CNNI-BCC is

onstructed from convolution layer with kernel size 5 × 5 filter,

ooling layer with pool size 2 × 2 filter and strides of two, learning

ate with 0.003, training step with 20,0 0 0. 

For this evaluation, the testing data is categorised into three

ifferent categories, namely all arguments, mass region arguments

nd calcification arguments. For all arguments, all testing mammo-

ram images are involved. For the mass only argument, only the

reast region mass section mammograms are involved. The mam-

ograms with the calcification will be involved under calcification

rgument category. These three categories of testing data are fed

s input to the CNNI-BCC and the Mammogram Classification

sing Convolutional Neural Networks (MCCNN) ( Henry, 2018 ). By

eferring to Fig. 19 , CNNI-BCC excels than the MCCNN for mass

rgument images and all arguments images at 0.8585 and 0.8271

ccuracy. 
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Fig. 20. The CNNI-BCC classification results for several patients. 

Table 7 

The criterion values and coordinates of the ROC curve for Convolutional Neural Network Improvement for Breast Cancer Classification (CNNI-BCC) against ground 

truths. [Show]. 

Criterion Sensitivity 95% CI Specificity 95% CI + LR 95% CI -LR 95% CI + PV 95% CI -PV 95% CI 

≥0 10 0.0 0 90.7 − 100.0 0.00 0.0 − 2.0 1.00 1.0 − 1.0 17.2 17.2 − 17.2 

> 0 89.47 75.2 − 97.1 90.71 85.5 − 94.5 9.63 6.0 − 15.3 0.12 0.05 − 0.3 66.7 55.7 − 76.1 97.6 94.3 − 99.1 

> 1 0.00 0.0 − 9.3 10 0.0 0 98.0 - 100.0 1.00 1.0 − 1.0 82.8 82.8 − 82.8 
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s  

p  
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.2. CNNI-BCC evaluation on detected breast cancer lesion 

Breast cancer lesions are detected and classified through pre-

ented work. The detected region are labelled with the matching

robability of the breast cancer types. Fig. 20 showed several real

atient’s breast cancer classification results. 
According to the table, the detected region of breast cancer le-

ion area are labelled as the type of the breast cancer. The com-

uted classification probability are shown on the labelled tag along

ith the bounding box. 
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Fig. 21. The ROC curves generated from CNNI-BCC and Neuroph ( The Neu- 

roph, 2018 ). 

Table 8 

The analysis of ROC curve comparison of CNNI-BCC 

and Neuroph ( The Neuroph, 2018 ). 

Variable AUC SE a 95% CI b 

CNNI_BCC 0.901 0.0274 0.854 to 0.937 

neuroph_NN 0.602 0.0204 0.534 to 0.667 

Table 9 

Pairwise comparison of ROC curves. 

Difference between areas 0.299 

Standard Error a 0.0339 

95% Confidence Interval 0.233 to 0.366 

z statistic 8.838 

Significance level P < 0.0 0 01 
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4.3. ROC curves comparison 

The ROC curves generated from CNNI-BCC and Neuroph

( The Neuroph, 2018 ) are compared and discussed. Fig. 21 shows

the comparison of the ROC curves from CNNI-BCC and Neuroph

( The Neuroph, 2018 ). The ROC curves are generated based on the

221 patients’ classification results. Breast cancer patients are iden-

tified as the positive group while normal or healthy patients are

indicated as the negative group. Table 8 summarizes the results. 

As shown in Table 8 , AUC for CNNI-BCC is 0.901 ± 0.0274,

which is better than those of Neuroph ( The Neuroph, 2018 )., i.e.,

0.602 ± 0.0204. The pairwise comparison of ROC curves is anal-

ysed, and tabulated in Table 9 . For pairwise comparison of ROC

curves, the calculated significance level P is less than 0.0 0 01. When

the calculated p value is smaller than 0.05 ( P < 0.05), the two ROC

curves are significantly different. Hence, the tabulated result shows

that CNNI-BCC is better than Neuroph ( The Neuroph, 2018 ). 

Based on the 221 real patient subjects, CNNI-BCC has achieved

the better performance as compared to Neuroph ( The Neu-

roph, 2018 ). CNNI-BCC outperforms other relevant methods by hav-

ing the lowest false positive and false negative rates. The lowest

false positive and false negative rates indicate that the chances

of false detection of CNNI-BCC are lower than other compared

techniques. Therefore, the evaluation outcome ascertained that

CNNI-BCC is a better-automated breast cancer lesion classification

method. 

In Section 4.1 , the experimental results between CNNI-BCC

and the Mammogram Classification Using Convolutional Neural

Networks (MCCNN) ( Henry, 2018 ) are compared. By referring to

Fig. 19 , CNNI-BCC excels than the MCCNN for the mass argument
mages and all arguments images by achieving higher accuracy on

lassification. 

In Section 4.2 , CNNI-BCC can classify the testing images as ma-

ignant, benign and normal classes. The region of suspected cancer

esion mass is labelled with classification result. For the segmen-

ation feature, the presented method can be improved by applying

eat map representation of the cancer lesion distribution. This fea-

ure can enhance the image quality and provide more information

o the medical experts. 

In Section 4.3 , the conducted experiment and evaluation

howed that CNNI-BCC outperforms other methods in terms of

aving the highest accuracy. The performance can be improved

hrough more real patient datasets. The model can be employed

o other mediums such as smartphones to assist medical experts

n breast cancer diagnosis. 

. Conclusions 

CNNI-BCC method is presented to assist medical doctors in

reast cancer diagnosis. Conventionally, medical experts must

anually delineate the suspected breast cancer area. Studies sug-

ested that manual segmentation not only takes time, but also re-

ies on the machine and the operator ( Ting and Sim 2018, El At-

as, El Aroussi, & Wahbi, 2014 ). To counter the mentioned issues,

NNI-BCC is designed to implement supervised deep learning neu-

al network for breast cancer classification. The presented work is

n attempt to help medical doctors in determining breast cancer

esion. The study was experimented on 221 real patient subjects.

he evaluation based on the experimental results showed that

NNI-BCC outperforms existing studies ( Saad et al., 2016; Tan et al.,

017 ) and commercial product, Neuroph ( The Neuroph, 2018 ).

NNI-BCC achieved sensitivity, accuracy, AUC and specificity of

9.47%, 90.50%, 0.901 ± 0.0314 and 90.71%, respectively. 

The key contribution of this research is the application of IDBLL

ith improved CNNBS to detect and classify breast cancer lesion

utomatically without prior knowledge with respect to its pres-

nce. The CNNI-BCC model is superior to the compared methods

ased on a test set of 221 real patient subjects. The results indicate

he potential of CNNI-BCC to analyse the conditions of suspected

reast cancer patients during diagnosis. 
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